- Accueil »
- The Quantum Measure -- And How To Measure It

Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.

Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.

Speaker(s):

Scientific Areas:

Collection/Series:

PIRSA Number:

17030047

When utilized appropriately, the path-integral offers an alternative to the ordinary quantum formalism of state-vectors, selfadjoint operators, and external observers -- an alternative that seems closer to the underlying reality and more in tune with quantum gravity. The basic dynamical relationships are then expressed, not by a propagator, but by the **quantum measure**, a set-function $\mu$ that assigns to every (suitably regular) set $E$ of histories its generalized measure $\mu(E)$. (The idea is that $\mu$ is to quantum mechanics what Wiener-measure is to Brownian motion.) Except in special cases, $\mu(E)$ cannot be interpreted as a probability, as it is neither additive nor bounded above by unity. Nor, in general, can it be interpreted as the expectation value of a projection operator (or POVM). Nevertheless, I will describe how one can ascertain $\mu(E)$ experimentally for any specified $E$, by means of an arrangement which, in a well-defined sense, acts as an $E$-pass filter. This raises the question whether in certain circumstances we can claim to know that the event $E$ actually did occur.

REFERENCE:

Alvaro Mozota Frauca and Rafael Dolnick Sorkin, How to Measure the Quantum Measure, Int J Theor Phys 56: 232-258 (2017), arxiv:1610.02087

Share This PageShare this on TwitterShare on FacebookPublish this post to LinkedInSubmit this post on reddit.com

©2012 Institut Périmètre de Physique Théorique