Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.
 

Partition Functions of Three Dimensional Gravity



Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.


Recording Details

Speaker(s): 
Scientific Areas: 
Collection/Series: 
PIRSA Number: 
07110061

Abstract

We consider pure three dimensional quantum gravity with a negative cosmological constant. The torus partition function can be computed exactly as a sum over geometries, including all known quantum corrections. The answer provides important clues about the structure of quantum gravity; in particular, in order for the theory to be a proper quantum mechanical system some extra ingredients are needed beyond the usual real geometries considered in general relativity. One possiblity is that complex geometries need to be included; this leads to holomorphically factorized partition functions. These partition functions provide a wealth of information about black hole microphysics. For example, the Hawking-page phase transition can be studied exactly; it is a phase transition of the type described by Lee and Yang, which is associated with a condensation of zeros in the complex temperature plane.