Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.
 

Nilpotent Slodowy slices and W-algebras



Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.


Recording Details

Speaker(s): 
Scientific Areas: 
Collection/Series: 
PIRSA Number: 
20100064

Abstract

To any vertex algebra one can attach in a canonical way a certain Poisson variety, called the associated variety. Nilpotent Slodowy slices appear as associated varieties of admissible (simple) W-algebras. They also appear as Higgs branches of the Argyres-Douglas theories in 4d N=2 SCFT’s. These two facts are linked by the so-called Higgs branch conjecture. In this talk I will explain how to exploit the geometry of nilpotent Slodowy slices to study some properties of W-algebras whose motivation stems from physics. This is a joint work with Tomoyuki Arakawa and Jethro van Ekeren (still in preparation).