Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.
 

Loops in AdS from conformal symmetry



Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.


Recording Details

Speaker(s): 
Scientific Areas: 
Collection/Series: 
PIRSA Number: 
17020126

Abstract

In this talk I will discuss a new use for conformal field theory crossing equation in the context of AdS/CFT:  the computation of loop amplitudes in AdS, dual to non-planar correlators in holographic CFTs. I will revisit this problem and the dual 1/N expansion of CFTs, in two independent ways. The first is to show how to explicitly solve the crossing equations to the first subleading order in 1/N^2, given a leading order solution. This is done as a systematic expansion in inverse powers of the spin, to all orders. These expansions can be resummed, leading to the CFT data for finite values of the spin. The second approach involves Mellin space. As an example, I’ll show how the polar part of the four-point, loop-level Mellin amplitudes can be fully reconstructed from the leading-order data. The anomalous dimensions computed with both methods agree. In the case of \phi^4 theory in AdS, the crossing solution reproduces a previous computation of the one-loop bubble diagram. I will end with a discussion on open problems and new developments.