- Accueil »
- Light Cone Thermodynamics

Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.

Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.

Speaker(s):

Scientific Areas:

Collection/Series:

PIRSA Number:

17110055

In this talk, I will show that light cones in MInkowski spacetime are a beautiful analoue of black hole horizons in curved spacetime. To do so, I will prove the analogue of the four laws of black hole thermodynamics in this setting. This is what we called light cone thermodynamics. More precisely, I will consider null surfaces defined by the out-going and in-falling wave fronts emanating from and arriving at a sphere in Minkowski spacetime. Such null surfaces, made of pieces of light cones, are bifurcate conformal Killing horizons for suitable conformally stationary observers. They can be extremal and non-extremal depending on the radius of the shining sphere. Such conformal Killing horizons have a constant light cone (conformal) temperature, given by the standard expression in terms of the surface gravity. Considering exchanges of conformally invariant energy across the conformal horizon, one can prove, in perturbation theory, a first law where entropy changes are given by 1/4 of the changes of the area of the bifurcate surface in Planck units. In the extremal case they become light cones associated with a single event; these have vanishing temperature as well as vanishing entropy. I will conclude with possible generalisations and applications of such results.

Share This PageShare this on TwitterShare on FacebookPublish this post to LinkedInSubmit this post on reddit.com

©2012 Institut Périmètre de Physique Théorique