Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.
 

Invariant Set Theory - A Realistic Causal Approach for Synthesising Quantum and Gravitational Physics?



Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.


Recording Details

Speaker(s): 
Scientific Areas: 
Collection/Series: 
PIRSA Number: 
16050032

Abstract

As discussed in last week’s colloquium, the use of the p-adic metric in state space provides a route to resolving the Bell Theorem in favour of realism and local causality, without fine tuning. Here the p-adic integers provide a natural way to describe the fractal geometry of Invariant Set Theory’s state space. In this talk I first explore the role of complex numbers in Invariant Set Theory (arXiv:1605.01051), and describe a novel realistic perspective on quantum interferometry. Then I will describe a programme of work to synthesise quantum and gravitational physics realistically and causally within the framework of Invariant Set Theory. I will describe a p-adic generalisation of the field equations of General Relativity, and discuss the consequent novel perspectives for understanding the dark (energy and matter) universe.