Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.

Homological product codes

Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.

Recording Details

PIRSA Number: 


All examples of quantum LDPC codes known to this date suffer from a poor distance scaling limited by the square-root of the code length. This is in a sharp contrast with the classical case where good LDPC codes are known that combine constant encoding rate and linear distance. In this talk I will describe the first family of good quantum "almost LDPC" codes. The new codes have a constant encoding rate, linear distance, and stabilizers acting on at most square root of n qubits, where n is the code length. For comparison, all previously known families of good quantum codes have stabilizers of linear weight. The proof combines two techniques: randomized constructions of good quantum codes and the homological product operation from algebraic topology. We conjecture that similar methods can produce good quantum codes with stabilizer weight n^a for any a>0. Finally, we apply the homological product to construct new small codes with low-weight stabilizers.

This is a joint work with Matthew Hastings
Preprint: arXiv:1311.0885