Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.

Entanglement Complexity and Scrambling via Braiding of Nonabelions

Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.

Recording Details

Scientific Areas: 
PIRSA Number: 


Entanglement spectrum (ES) contains more information than the entanglement entropy, a single number. For highly excited states, this can be quantified by the ES statistics, i.e. the distribution of the ratio of adjacent gaps in the ES. I will first present examples in both random unitary circuits and Hamiltonian systems, where the ES signals whether a time-evolved state (even if maximally entangled) can be efficiently disentangled without precise knowledge of the time evolution operator. This allows us to define a notion of entanglement complexity that is not revealed by the entanglement entropy.

In the second part, I will discuss how quantum states are scrambled via braiding in systems of non-Abelian anyons through the lens of ES statistics. We define a distance between the entanglement level spacing distribution of a state evolved under random braids and that of a Haar-random state, using the Kullback-Leibler divergence $D_{\mathrm{KL}}$. We study $D_{\mathrm{KL}}$ numerically for random braids of Majorana fermions (supplemented with random local four-body interactions) and Fibonacci anyons. Our results reveal a hierarchy of scrambling among various models --- even for the same amount of entanglement entropy --- at intermediate times, whereas all models exhibit the same late-time behavior. In particular, we find that braiding of Fibonacci anyons scrambles more efficiently than the universal H+T+CNOT set. Our results promote $D_{\mathrm{KL}}$ as a quantifiable metric for scrambling and quantum chaos, which applies to generic quantum systems.