Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.

Emergent Fermionic Strings in Bosonic He4 Crystal

Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.

Recording Details

Scientific Areas: 
PIRSA Number: 


Large zero point motion of light atoms in solid Helium 4 leads to several anomalous properties, including a supersolid type behavior. We suggest an `anisotropic quantum melted' atom density wave model for solid He4 with hcp symmetry. Here, atoms preferentially quantum melt along the c-axis and maintain self organized crystallinity and confined dynamics along ab-plane. This leads to profound consequences: i) statistics transmutation of He4 atoms into fermions for c-axis dynamics, arising from restricted one dimensional motion and hard core repulsion, ii) resulting `fermionic strings' undergo Peierls instability (an atom density wave formation) in a staggered fashion and help regain the original hcp crystal symmetry, iii) `particle-hole' type excitations iv) emergence of `confined' `half atom' domain wall excitations, and so on. Known anomalies of solid He4 gets a natural qualitative explanation in the present scenario.