Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.

Demonstration of Self-correcting Quantum Memory in Three Dimensions

Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.

Recording Details

Scientific Areas: 
PIRSA Number: 


Based on the joint work with Sergey Bravyi, IBM Watson.   We show that any topologically ordered local stabilizer model of spins in three dimensional lattices that lacks string logical operators can be used as a reliable quantum memory against thermal noise. It is shown that any local process creating a topologically charged particle separated from other particles by distance $R$, must cross an energy barrier of height $c \log R$. This property makes the model glassy. We devise an efficient decoding algorithm that should be used at the final read-out, and prove a lower bound on the memory time until which the fidelity between the outcome of the decoder and the initial state is close to 1. The memory time increases as $L^{\beta}$ where $L$ is the system size and $\beta$ the inverse temperature, as long as $L