Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.
 

Cluster Structures on Higher Teichmuller Spaces for Classical Groups - Ian Le



Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.


Recording Details

Scientific Areas: 
Collection/Series: 
PIRSA Number: 
16010071

Abstract

Let $S$ be a surface, $G$ a semi-simple group of type B, C or D. I will explain why the moduli space of framed local systems $A_{G,S}$ defined by Fock and Goncharov has the structure of a cluster variety, and fits inside a larger structure called a cluster ensemble. This was previously known only in type A. This gives a more direct proof of results of Fock and Goncharov for the symplectic and spin groups, and also allows one to quantize higher Teichmuller space in these cases. If time permits, I hope to talk about applications to counting tensor invariants of finite dimensional representations of these groups.