Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
Cosmological constant problem, evolution of density fluctuations.
Black holes are like bells; once perturbed they will relax through the emission of characteristic waves. The frequency spectrum of these waves is independent of the initial perturbation and, hence, can be thought of as a `fingerprint' of the black hole. Since the 1970s scientists have considered the possibility of using these characteristic modes of oscillation to identify astrophysical black holes. With the recent detection of gravitational waves, this idea has started to turn into reality.
The detection of gravitational waves from mergers of compact binaries in the first two runs of the Advanced LIGO-Virgo have brought in valuable insights into fundamental physics and astrophysics. The coalescence process sweeping the components through a range of frequencies at highly relativistic velocities, have enabled some of the first tests of general relativity in its highly dynamical and extremely strong field regime. The recent detection of the binary neutron star merger has shed first light on the elusive neutron star equation of state.
Discussion of whether symmetry can classify all possible states; distances between quantum states
Generalized formalism continued
Our universe today, supernovae and dark energy
How does classical chaos affect the generation of quantum entanglement? What signatures of chaos exist at the quantum level and how can they be quantified? These questions have puzzled physicists for a couple of decades now. We answer these questions in spin systems by analytically establishing a connection between entanglement generation and a measure of delocalization of a quantum state in such systems. While delocalization is a generic feature of quantum chaotic systems, it is more nuanced in regular systems.
While it’s undeniably sexy to work with infinite-dimensional categories “model-independently,” we contend there is a categorical imperative to familiarize oneself with at least one concrete model in order to check that proposed model-independent constructions interpret correctly. With this aim in mind, we recount the n-complicial sets model of (∞,n)-categories for 0 ≤ n ≤ ∞, the combinatorics of which are quite similar to its low-dimensional special cases: quasi-categories (n=1) and Kan complexes (n=0).
Duality of the quantum Ising model; exact diagonalization of the quantum XY model using Jordan-Wigner transformation
Generalized formalism for quantum theory (density operators, POVMs, CPT maps)
Check back for details on the next lecture in Perimeter's Public Lectures Series