Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.

Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.  Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 



Lundi fév 08, 2010

In quantum information, entanglement has often been viewed as a resource. But in this talk, I will look at (pure bipartite) entanglement through the lens of superselection rules. The idea is that it requires quantum communication not only to create entanglement, but also to destroy it in a way that doesn't leak information to the environment. As a result, when communication is scarce, superpositions of different numbers of EPR pairs can be difficult to obtain.

Scientific Areas: 


Vendredi fév 05, 2010

Week 1: Basic topics (Qubits, quantum gates, quantum circuits, density matrices, quantum operations, entropy, entanglement)
Week 2: Algorithms and complexity (Languages, complexity classes, oracles, RSA, Deutsch-Jozsa algorithm, Shor's algorithm, Grover's algorithm)
Week 3: Information theory and implementations (Overview of implementations, quantum error correction, quantum cryptography, quantum information theory)


Jeudi fév 04, 2010

This course begins with a thorough introduction to quantum field theory. Unlike the usual quantum field theory courses which aim at applications to particle physics, this course then focuses on those quantum field theoretic techniques that are important in the presence of gravity. In particular, this course introduces the properties of quantum fluctuations of fields and how they are affected by curvature and by gravitational horizons.