Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
I will describe how the geometry of supersymmetric AdS solutions of type IIB string theory may be rephrased in terms of the geometry of generalized (in the sense of Hitchin) Calabi-Yau cones. Calabi-Yau cones, and hence Sasaki-Einstein manifolds, are a special case, and thus the geometrical structure described may be considered a form of generalized Sasaki-Einstein geometry. Generalized complex geometry naturally describes many features of the AdS/CFT correspondence.
I'll discuss how to get an interesting invariant of submanifolds by using the ideas of string topology.
I will discuss the existence problem of extremal Kahler metrics (in the sense of Calabi) on the total space of a holomorphic projective bundle P(E) over a compact complex curve. The problem is not solved in full generality even in the case of a projective plane bundle over CP^1. However, I will show that sufficiently ``small'' Kahler classes admit extremal Kahler metrics if and only if the underlying vector bundle E can be decomposed as a sum of stable factors.
It is well known that new physics at the electroweak scale could solve important puzzles in cosmology, such as the nature of dark matter and the origin of the cosmic baryon asymmetry. In this talk, I discuss some of the simplest, non-supersymmetric possibilities, their collider signatures, and the prospects for their discovery and identification at the LHC.
In this talk we will discuss the (local) construction of a calibrated G_2 structure on the 7-dimensional quotient of an 8-dimensional quaternion-Kahler (QK) manifold M under the action of a group S^1 of isometries. The idea is to construct explicitly a 3-form of type G_2, using the data associated to the S^1 action and to the QK structure on M.
This is joint work with Francois Lalonde. Using an analogue of Seidel's homomorphism in Lagrangian Floer homology for one Lagrangian, we give a condition for a diffeomorphism on a Lagrangian to extend to a Hamiltonian diffeomorphism on the whole symplectic manifold.
This talk is a report on joint work with Mohammed Abouzaid and Ludmil Katzarkov about mirror symmetry for blowups, from the perspective of the Strominger-Yau-Zaslow conjecture. Namely, we first describe how to construct a Lagrangian torus fibration on the blowup of a toric variety X along a codimension 2 subvariety S contained in a toric hypersurface. Then we discuss the SYZ mirror and its instanton corrections, to provide an explicit description of the mirror Landau-Ginzburg model (possibly up to higher order corrections to the superpotential).
Quantum random walks have received much interest due to their non-
intuitive dynamics, which may hold a key to radically new quantum
algorithms. What remains a major challenge is a physical realization
that is experimentally viable, readily scalable, and not limited to
specific connectivity criteria. In this seminar, I will present an
implementation scheme for quantum walking on arbitrarily complex
graphs. This scheme is particularly elegant since the walker is not
Recently methods of integrability were shown to be useful for solving gauge theories in various dimensions. I will make an introduction into integrability in two dimensions and demonstrate how the integrability works also for some three and four dimensional gauge theories.
Check back for details on the next lecture in Perimeter's Public Lectures Series