Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.

Vidéotheque

Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. 

Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.

 

  

 

Jeudi fév 06, 2020
Speaker(s): 
Collection/Series: 
Scientific Areas: 

 

Mardi fév 04, 2020
Speaker(s): 

In this talk I will review the state of the art in PN gravity, and in particular its significant advancement via the EFT of spinning gravitating objects. First, I will introduce the concept of a tower of EFTs for the binary inspiral problem. I will then present the intricate formulation of the EFT of spinning objects. Finally, I will present some advanced results accomplished within this framework.

Collection/Series: 
Scientific Areas: 

 

Lundi fév 03, 2020
Speaker(s): 

I’ll talk about two independent works on classical and quantum neural networks connected by information theory. In the first part of the talk, I’ll treat sequence models as one-dimensional classical statistical mechanical systems and analyze the scaling behavior of mutual information. I'll provide a new perspective on why recurrent neural networks are not good at natural language processing. In the second part of the talk, I’ll study information scrambling dynamics when quantum neural networks are trained by classical gradient descent algorithm.

Collection/Series: 

 

Jeudi jan 30, 2020
Speaker(s): 

I propose [1] to use the residual anyons of overscreened Kondo physics for quantum computation. A superconducting proximity gap of Δ<TK can be utilized to isolate the anyon from the continuum of excitations and stabilize the non-trivial fixed point. We use the dynamical large-N technique [2] and bosonization to show that the residual entropy survives in a superconductor and suggest a charge Kondo setup for isolating and detecting the Majorana fermion in the two-channel Kondo impurity.

Collection/Series: 
Scientific Areas: 

 

Jeudi jan 30, 2020
Speaker(s): 
Collection/Series: 
Scientific Areas: 

 

Mercredi jan 29, 2020
Speaker(s): 

Motivated by puzzles in quantum gravity AdS/CFT, Lenny Susskind posed the following question: supposing one had the technological ability to distinguish a macroscopic superposition of two given states |v> and |w> from incoherent mixture of those states, would one also have the technological ability to map |v> to |w> and vice versa?  More precisely, how does the quantum circuit complexity of the one task relate to the quantum circuit complexity of the other?  Here we resolve Susskind's question -- showing that the two complexities are essentially identical, even for approximate v

Pages