Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
Conventional equations of state suggest that in complete gravitational collapse a singular state of matter with infinite density could be reached finally to a black hole, the characteristic feature of which is its apparent horizon, where light rays are first trapped. The loss of information to the outside world this implies gives rise to serious difficulties with well-established principles of quantum mechanics and statistical physics.
Classical chaotic systems exhibit exponential divergence of initially infinitesimally close trajectories, which is characterized by the Lyapunov exponent. This sensitivity to initial conditions is popularly known as the "butterfly effect." Of great recent interest has been to understand how/if the butterfly effect and Lyapunov exponents generalize to quantum mechanics, where the notion of a trajectory does not exist.
Dr. Avery Broderick will provide a highly accessible and interesting lecture on the Event Horizon Telescope (EHT) and international efforts to interpret horizon-resolving images of numerous supermassive black holes. Black holes are among the most powerful and mysterious phenomena in the universe. Almost every galaxy has at its core a supermassive black hole, millions or even billions of times more massive than our sun. Despite composing a small fraction of the galactic mass budgets, they set the stage for astrophysical dramas that dictate the fates of their hosts.
I will present a method for the implementation of a universal set of fault-tolerant logical gates using homological product codes. In particular, I will show how one can fault-tolerantly map between different encoded representations of a given logical state, enabling the application of different classes of transversal gates belonging to the underlying quantum codes. This allows for the circumvention of no-go results pertaining to universal sets of transversal gates and provides a general scheme for fault-tolerant computation while keeping the stabilizer generators of the code sparse.
Recently there have been several proposals of low-energy precision experiments that can search for new particles, new forces, and the Dark Matter of the Universe in a way that is complementary to collider searches. In this talk, I will present some examples involving atomic clocks, nuclear magnetic resonance, and astrophysical black holes accessible to LIGO.
Entanglement spectrum (ES) contains more information than the entanglement entropy, a single number. For highly excited states, this can be quantified by the ES statistics, i.e. the distribution of the ratio of adjacent gaps in the ES. I will first present examples in both random unitary circuits and Hamiltonian systems, where the ES signals whether a time-evolved state (even if maximally entangled) can be efficiently disentangled without precise knowledge of the time evolution operator.
Most current dark matter detection strategies, including both direct and indirect efforts, are based on the assumption that the galactic dark matter number density is quite high, allowing for the detection of rare scattering events. Such a paradigm arises naturally if the dark matter self-interactions are weak. However, strong interactions within the dark sector can give rise to large composite objects, whose detection requires a different experimental paradigm. We call these object Dark Blobs.