Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
In this talk I address the problem of simultaneously inferring unknown quantum states and unknown quantum measurements from empirical data. This task goes beyond state tomography because we are not assuming anything about the measurement devices. I am going to talk about the time and sample complexity of the inference of states and measurements, and I am going to talk about the robustness of the minimal Hilbert space dimension. Moreover, I will describe a simple heuristic algorithm (alternating optimization) to fit states and measurements to empirical data.
The condensation of bosons can induce transitions between topological quantum field theories (TQFTs). This as been previously investigated through the formalism of Frobenius algebras and with the use of Vertex lifting coefficients. I will discuss an alternative, algebraic approach to boson condensation in TQFTs that is physically motivated and computationally efficient.
We consider quantum quench from a gapped to a gapless system in 1+1 dimensions. We
provide a rigorous proof of the thermalization of the reduced density matrix, hence that of
an arbitrary string of local operators in an interval. In case the system is integrable, the "thermalization" leads to a generalized Gibbs ensemble (GGE). We model the critical quench in terms of an initial state in terms of a conformal boundary state deformed by exponential cutoffs involving hamiltonian and other charges. We justify this choice of the initial state by explicitly
Despite being ubiquitous throughout the Universe, the fundamental physics governing dark matter remains a mystery. While this physics plays little role in the current evolution of large-scale cosmic structures, it did have a major impact in the early epochs of the Universe on the evolution of cosmological density fluctuations on small causal length scales. Studying the astrophysical structures that resulted from the gravitational collapse of fluctuations on these small scales can thus yield important clues about the physics of dark matter.
In this talk, I will revise some of the aspects that lead isolated interacting quantum systems to thermalize.
In the presence of disorder, however, the thermalization process fails resulting in a phenomena where
transport is suppressed known as many-body localization. Unlike the standard Anderson localization for
non-interacting systems, the delocalized (ergodic) phase is very robust against disorder even for moderate
values of interaction. Another interesting aspect of the many-body localization phase is that under the time