Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
I present a proposal for a worldline action for discretized gravity with the same field content as loop quantum gravity. The proposal is defined through its action, which is a one-dimensional integral over the edges of the discretization. Every edge carries a finite-dimensional phase space, and the evolution equations are generated by a Hamiltonian, which is a sum over the constraints of the theory. I will explain the relevance of the model, and close with possible relations to other approaches of quantum gravity, including: relative locality, causal sets and twistor theory.
I present a proposal for a worldline action for discretized gravity with the same field content as loop quantum gravity. The proposal is defined through its action, which is a one-dimensional integral over the edges of the discretization. Every edge carries a finite-dimensional phase space, and the evolution equations are generated by a Hamiltonian, which is a sum over the constraints of the theory.
In the context of gauge/gravity duality, it has been suggested that the far-from equilibrium strongly coupled dynamics encountered in ultrarelativistic heavy-ion collisions may be modelled as the collisions of black holes in asymptotic anti-de-Sitter spacetimes. I will present results from the evolution of spacetimes that describe the merger of asymptotically global AdS black holes in 5D with an SO(3) symmetry. The initial trapped regions are sourced by scalar field collapse and we are able to evolve through the ensuing black hole merger as well as subsequent ring-down.
Quantum information theory has taught us that quantum theory is just one possible probabilistic theory among many others. In the talk, I will argue that this „bird’s-eye“ perspective does not only allow us to derive the quantum formalism from simple physical principles, but also reveals surprising connections between the structures of spacetime and probability which can be phrased as mathematical theorems about information-theoretic scenarios.
Quantum information theory has taught us that quantum theory is just one possible probabilistic theory among many others. In the talk, I will argue that this "bird's-eye" perspective does not only allow us to derive the quantum formalism from simple physical principles, but also reveals surprising connections between the structures of spacetime and probability which can be phrased as mathematical theorems about information-theoretic scenarios.
Interferometers capture a basic mystery of quantum mechanics: a single particle can exhibit wave behavior, yet that wave behavior disappears when one tries to determine the particle's path inside the interferometer. This idea has been formulated quantitatively as an inequality, e.g., by Englert and Jaeger, Shimony, and Vaidman, which upper bounds the sum of the interference visibility and the path distinguishability. Such wave-particle duality relations (WPDRs) are often thought to be conceptually inequivalent to Heisenberg's uncertainty principle, although this has been debated.