Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.

Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.  Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

  

 

Mardi avr 18, 2017
Speaker(s): 

We demonstrate that 1+1D conformal symmetry emerges in critical spin chains by constructing a lattice ansatz Hn for (certain combinations of) the Virasoro generators Ln. The generators Hn offer a new way of extracting conformal data from the low energy eigenstates of the lattice Hamiltonian on a finite circle. In particular, for each energy eigenstate, we can now identify which Virasoro tower it belongs to, as well as determine whether it is a Virasoro primary or a descendant (and similarly for global conformal towers and global conformal primaries/descendants).

 

Mardi avr 18, 2017
Speaker(s): 

We apply the recently suggested strategy to lift state spaces and operators for (2+1)-dimensional topological quantum field theories to state spaces and operators for a (3+1)-dimensional TQFT with defects. We start from the (2+1)-dimensional Turaev-Viro theory and obtain a state space, consistent with the state space expected from the Crane-Yetter model with line defects. This work has important applications for quantum gravity as well as the theory of topological phases in (3+1) dimensions.

 

Mardi avr 18, 2017
Speaker(s): 

Large parts of condensed matter theoretical physics and quantum chemistry have as a central goal discretizing and solving the continuum many-electron Schrodinger Equation. What do we want to get from these calculations? What are key problems of interest? What sort of approaches are used? I'll start with a broad overview of these questions using the renormalization group as a conceptual framework.

 

Mercredi avr 12, 2017
Speaker(s): 

I present three possible non-standard additions to cosmology.  First I show that a very long early period of inflation could exist in which parameters evolve, or 'relax', to seemingly fine-tuned values.  Next, I show that even if cosmic inflation existed, a period after inflation with anisotropic stress can dramatically affect super-horizon modes and thus the imprint on the cosmic microwave background.  Finally, I show that cosmological singularities can be avoided by a bounce without using exotic matter that violates the Null Energy Condition, but by the addition of v

Collection/Series: 

 

Mardi avr 11, 2017
Speaker(s): 

We consider the problem of certifying entanglement and nonlocality in one-dimensional translation-invariant (TI) infinite systems when just averaged near-neighbor correlators are available. Exploiting the triviality of the marginal problem for 1D TI distributions, we arrive at a practical characterization of the near-neighbor density matrices of multi-separable TI quantum states. This allows us, e.g., to identify a family of separable two-qubit states which only admit entangled TI extensions.

Collection/Series: 
Scientific Areas: 

 

Mardi avr 11, 2017
Speaker(s): 

The talk will review the computation of the three point function of gauge-invariant operators in the planar N=4 SYM theory using integrability-based methods. The structure constant can be decomposed, as proposed by Basso, Komatsu and Vieira, in terms of two form-factor-like objects (hexagons). The multiple sums and integrals implied by the hexagon decomposition can be performed in the large-charge limit, and be compared to the results obtained by semiclassics. I will discuss a method to perform these sums and the contributions currently accessible by this approach.

Collection/Series: 
Scientific Areas: 

Pages