Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
Quantizing 4D geometries leads to discrete area spectra. Such discrete area spectra are also suggested by the holographic principle and entropy counting for black holes.
Observations have shown that nearly all galaxies harbor massive or supermassive black holes at their centers. Gravitational wave (GW) observations of these black holes will shed light on their growth and evolution, and the merger histories of galaxies. Massive and supermassive black holes are also ideal laboratories for studying strong-field gravity. Pulsar timing arrays (PTAs) use observations of millisecond pulsars to detect low-frequency GWs with frequencies ~1-100 nHz, and can detect GWs emitted by supermassive black hole binaries, which form when two galaxies merge.
Geometry of a pair of complex Lagrangian submanifolds of a complex symplectic manifold appears in many areas of mathematics and physics, including exponential integrals in finite and infinite dimensions, wall-crossing formulas in 2d and 4d, representation theory, resurgence of WKB series and so on.
In 2014 we started a joint project with Maxim Kontsevich which we named "Holomorphic Floer Theory" (HFT for short) in order to study all these (and other) phenomena as a part of a bigger picture.
It is believed that active quantum error correction will be an essential ingredient to build a scalable quantum computer. The currently favored scheme is the surface code due to its high decoding threshold and efficient decoding algorithm. However, it suffers from large overheads which are even more severe when parity check measurements are subject to errors and have to be repeated. Furthermore, the number of encoded qubits in the surface code does not grow with system size, leading to a sub-optimal use of the physical qubits.
Idempotent (aka Karoubi) completion is used throughout mathematics: for instance, it is a common step when building a Fukaya category. I will explain the n-category generalization of idempotent completion. We call it "condensation completion" because it answers the question of classifying the gapped phases of matter that can be reached from a given one by condensing some of the chemicals in the matter system. From the TFT side, condensation preserves full dualizability.
In order to solve the problem of time in quantum gravity, various approaches to a relational quantum dynamics have been proposed. In this talk, I will exploit quantum reduction maps to illustrate a previously unknown equivalence between three of the well-known ones: (1) relational observables in the clock-neutral picture of Dirac quantization, (2) Page and Wootters’ (PW) Schrödinger picture formalism, and (3) the relational Heisenberg picture obtained via symmetry reduction. Constituting three faces of the same dynamics, we call this equivalence the trinity.
It is expected that the Betti version of the geometric Langlands program should ultimately be about the equivalence of two 4-dimensional topological field theories. In this talk I will give an overview of ongoing work in categorified sheaf theory and explain how one can use it to describe the categories of boundary conditions arising on the spectral side.