Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
I will review the construction of Coulomb branches in 3D gauge theory for a compact Lie group G and a quaternionic representation E. In the case when E is polarized, these branches are determined by topological boundary conditions built from the gauged A-model of the two polar halves of E. No analogue of this is apparent in the absence of a polarization, nonetheless the Coulomb branch can be defined by the use of a ‘quantum’ square root of E (related to the Spin representation).
We discuss several numerical and analytical studies of the modified gravity theory Einstein dilaton Gauss-Bonnet (EdGB) gravity. This class of modified gravity theories admit scalarized black hole solutions. The theory may then provide significantly different gravitational wave signatures during binary black hole merger as compared to general relativity, so that gravitational wave observations may provide new stringent constraints on EdGB gravity.
In the 1980’s, work by Coleman and by Giddings and Strominger linked the physics of spacetime wormholes to ‘baby universes’ and an ensemble of theories. We revisit such ideas, using features associated with a negative cosmological constant and asymptotically AdS boundaries to strengthen the results, introduce a change in perspective, and connect with recent replica wormhole discussions of the Page curve. A key new feature is an emphasis on the role of null states.
There has been tremendous progress in the many layers needed to realize large-scale quantum computing, from the hardware layers to the high level software. There has also been vastly increased exploration into the potentially useful applications of quantum computers, which will drive the desire to build quantum computers and make them available to users. I will describe some of my research in quantum algorithmics and quantum compiling.
I describe a novel way to produce states associated to geodesic motion for classical particles in the bulk of AdS that arise from particular operator insertions at the boundary
at a fixed time. When extended to black hole setups, one can understand how to map back the geometric information of the geodesics back to
the properties of these operators. In particular, the presence of stable circular orbits in global AdS are analyzed. The classical Innermost Stable Circular Orbit
In this talk I revisit the canonical framework for general relativity in its connection-frame field formulation, exploiting its local holographic nature. I will show how we can understand the Gauss law, the Bianchi identity and the space diffeomorphism constraints as conservation laws for local surface charges. These charges being respectively the electric flux, the dual magnetic flux and momentum charges. Quantization of the surface charge algebra can be done in terms of Kac-Moody edge modes.
As of late March 2020, Covid-19 has already secured its status among the most expansive pandemics of the last century. Covid-19 is caused by a coronavirus--SARS-CoV-2--that causes a severe respiratory disease in a fraction of those infected, and is typified by several important features: ability to infect cells of various kinds, contagiousness prior to the onset of symptoms, and a widely varying experience with disease across patient demographics.
Gauge theories possess nonlocal features that, in the presence of boundaries, inevitably lead to subtleties. In particular their fundamental degrees of freedom are not point-like. This leads to a non-trivial cutting (C) and sewing (S) problem:
(C) Which gauge invariant degrees of freedom are associated to a region with boundaries?
With the impressive number of binary black hole mergers observed by the LIGO-Virgo detector network in the recent years, it is now important to understand the formation channels of these systems. This talk focuses on the common envelope phase, crucial to the formation of compact object binaries. During this phase, the two companions evolve inside a shared envelope, with the secondary object orbiting towards the core of the primary star. Drag forces in the stellar envelope pull the two stellar cores into a tighter orbit.
Historically, new particles and forces in the Standard Model have most often revealed themselves at high-energy particle colliders. Certain phenomena beyond the Standard Model, however, are best studied by using carefully designed low-energy precision measurements, or via their imprints on astrophysical and cosmological observables. In this talk, I will provide a concise overview of some of the new experiments and searches devised to look for new physics beyond the Standard Model.