Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
A proposal is made for a fundamental theory, in which the history of the universe is constituted of views of itself. Views are attributes of events, and the theory's only be-ables; they comprise information about energy and momentum transferred to an event from its causal past.
The use of wavelet-based constructions has led to significant progress in the analytic understanding of holographic tensor networks, such as the multi-scale entanglement renormalization ansatz (MERA). In this talk I will give an overview of the (past and more recently established) connections between wavelets and MERA, and the discuss the important results that have followed. I will also discuss work currently underway that exploits the wavelet-MERA connection in order to produce new families of wavelets that are optimal for certain tasks, such as image compression.
We present some recent results on the development of efficient unconstrained tree tensor networks algorithms and their application to high-dimensional many-body quantum systems. In particular, we present our results on topological two-dimensional systems, two-dimensional Rydberg atom systems, and two- and three-dimensional lattice gauge theories in presence of fermonic matter.
In this talk we will start with a review of path-integraloptimization, which provides a useful description of non-unitary tensor networks for Euclidean path-integrals in CFTs. We will explain an emergence of AdS geometry in this method and an interpretation as a computational complexity. Next we will give its application to analytical calculations of entanglement of purification, which was quite recently reproduced by numerical calculations. Finally, we would like to present a derivation of a path-integral optimization method directly from the AdS/CFT.
The subject of equivariant elliptic cohomology finds itself at the interface of topology, string theory, affine representation theory, singularity theory and integrable systems. These connections were already known to the founders of the discipline, Grojnowski, Segal, Hopkins, Devoto, but have come into sharper focus in recent years with a number of remarkable developments happening simultaneously: First, there are the geometric constructions, due to Kitchloo, Rezk and Spong, Berwick-Evans and Tripathy, building on the older program of Stolz-Teichner, and of course Segal.
In this talk I will speak about the meeting point of two models that have raised interest in the community in the last years. From one side, we looked at measurement-based quantum computing (MBQC), which is an alternative to circuit-based quantum computing. Instead of modifying a state via gates, MBQC achieves the same result by measuring auxiliary qubits in a graph. From the other side, we considered variational quantum eigensolvers (VQEs), that are one of the most successful tools for exploiting quantum computers in the NISQ era. In our work, we present two measurement-based VQE schemes.
Compact binaries may be formed dynamically in globular clusters, with large (close to unity) orbital eccentricity and emitting gravitational waves within the detection band of ground based detectors. The gravitational waves from such sources resemble more a discrete set of bursts than the continuous signal of their quasi-circular counterparts. I here discuss the construction of new analytic waveforms for such systems, which rely on treating the problem as a perturbation of a parabolic fly-by.
A quantum state is a map from operators to real numbers that are their expectation values. Evaluating this map always entails using some algorithm, for example contracting a tensor network. I propose a novel way of quantifying the complexity of a quantum state in terms of "query complexity": the number of times an efficient algorithm for computing correlation functions in the given state calls a certain subroutine. I construct such an algorithm for a general "state at a cutoff" in 1+1-dimensional field theory.