Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
Mapping of galaxy density fluctuations on large scales is one of the most important goals of observational cosmology in this decade. These observations can significantly improve our knowledge of the universe, its origins and composition. In this talk I will review some of the science goals of the ongoing and future spectroscopic galaxy surveys and explain how these goals can be met. In particular, I will focus on some recent progress in theoretical modelling of the nonlinear structure formation and show how it can be used to extract cosmology from observations of the cosmic web.
Hoop conjecture suggests that microscopic black holes can be produced in collisions of high energy particles if the fundamental gravity scale is lowered to the electroweak scale in extra dimension models. This opens up the possibility of studying extra dimensions in collliders and neutrino telescopes. In this talk, I will introduce the unique signatures associated with black holes from cosmic neutrino-nucleon scattering in IceCube-Gen2. These signatures include new topologies, distinct energy distributions and unusual ratios of hadronic-to-electronic energy deposition.
Majorana zero modes have attracted much interest in recent years because of their promising properties for topological quantum computation. A key question in this regard is how fast two Majoranas can be exchanged giving rise to a unitary gate operation. In this presentation I will first explain that the transport of Majoranas in one-dimensional topological superconductors can be formulated as a “simple” optimal control optimization problem for which we propose several different control regimes.
Renormalisation in curved spacetimes is an involved subject. In contrast to renormalisation in a flat spacetime, the standard momentum representation is not directly available. Nevertheless, the momentum dependence of correlation functions is crucial to deciding whether a theory is unitary and causal. I will discuss how to define a notion of momentum dependence in gravity on a fundamental level. With this at hand, one can discuss an important quantum field theory observable: scattering cross sections.
A classical result of R. Courant gives an upper bound for the count of nodal domains (connected components of the complement of where a function vanishes) for Dirichlet eigenfunctions on compact planar domains. This can be generalized to Laplace-Beltrami eigenfunctions on compact surfaces without boundary. When considering random linear combinations of eigenfunctions, one can make this count more precise and pose statistical questions on the geometries appearing amongst the nodal domains: what percentage have one hole? ten holes?
Gravitational waves from the coalescence of compact binaries provide a unique opportunity to test gravity in strong field regime. In particular, the postmerger phase of the gravitational signal is a proxy for the nature of the remnant.
Zero-knowledge proofs are one of the cornerstones of modern cryptography. It is well known that any language in NP admits a zero-knowledge proof. In the quantum setting, it is possible to go beyond NP. Zero-knowledge proofs for QMA have first been studied in a work of Broadbent et al (FOCS'16). There, the authors show that any language in QMA has an (interactive) zero-knowledge proof. In this talk, I will describe an idea, based on quantum teleportation, to remove interaction at the cost of adding an instance-independent preprocessing step.