Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.

Vidéotheque

Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. 

Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.

 

  

 

 

Mardi oct 13, 2020

The potential for discovering new gauge fields of nature relies upon extending the collision energy of hadron colliding beams as far as possible beyond the present 14 TeV capability of LHC.  We must seek a balance of minimum cost/TeV for the ring of superconducting magnets, feasibility and cost of a tunnel to contain the ring, and balancing the luminosity against synchrotron radiation.  Balancing feasibility, technology, and cost is crucial if there is to be a high-energy frontier for discovery of new gauge fields. Three design cases exhibit the tricky balance among these parameters:

Collection/Series: 
Scientific Areas: 
 

 

Mardi oct 13, 2020
Speaker(s): 

Studying the smallest self-bound dark matter structure in our Universe can yield important clues about the fundamental particle nature of dark matter, and galaxy-scale strong gravitational lensing provides a unique way to detect and characterize dark matter on small scales at cosmological distances from the Milky Way. Research in this field can be broadly separated into works that aim to directly detect individual perturbers and works that aim to statistically constrain the matter distribution by looking at collective perturbations caused by an unresolved population of perturbers.

Collection/Series: 
Scientific Areas: 
 

 

Vendredi oct 09, 2020
Speaker(s): 

To analyze the performance of adaptive measurement protocols for the detection and quanti cation of state resources, we introduce the framework of quantum preparation games. A preparation game is a task whereby a player sequentially sends a number of quantum states to a referee, who probes each of them and announces the measurement result. The measurement setting at each round, as well as the final score of the game, are decided by the referee based on the past history of settings and measurement outcomes.

Collection/Series: 
Scientific Areas: 
 

 

Jeudi oct 08, 2020
Speaker(s): 

I discuss general argument to show that if a physical system can mediate locally the generation of entanglement between two quantum systems, then it itself must be non-classical. Remarkably, the argument does not assume any classical or quantum formalism to describe the mediating physical system: the result follows from general information-theoretic principles. This argument provides a robust and general theoretical basis for recently proposed tests of non-classicality in gravity, based on witnessing gravitationally-induced entanglement in quantum probes.

Collection/Series: 
Scientific Areas: 
 

 

Jeudi oct 08, 2020

The theory of quasimaps to Nakajima quiver varieties X has recently been used very effectively by Aganagic, Okounkov and others to study symplectic duality. For certain X, namely Hilbert schemes of ADE surfaces, it turns out quasimap theory is equivalent to a particular flavor of Donaldson-Thomas theory on a related threefold Y. I will explain this equivalence and how it intertwines concepts and tools from the two sides. For example, symplectic duality has something to say about the crepant resolution conjecture for Y.

Collection/Series: 
Scientific Areas: 
 

 

Jeudi oct 08, 2020
Speaker(s): 

The astrophysical background of gravitational waves (AGWB) is composed by the incoherent superposition of gravitational wave signals emitted by resolved and unresolved astrophysical sources from the onset of stellar activity until today. In this talk, I  will present a theoretical framework  to characterize the AGWB in terms of energy density and polarization and  I will show predictions for the angular power spectra of the background anisotropy and for its cross-correlations with electromagnetic observables, in the frequency bands accessible by  LIGO/Virgo and  LISA.  I will then discuss t

Collection/Series: 
Scientific Areas: 
 

 

Mercredi oct 07, 2020

What do data science and the foundations of quantum theory have to do with one another?

A great deal, it turns out. The particular branch of data science known as causal inference focuses on a problem which is central to disciplines ranging from epidemiology to economics: that of disentangling correlation and causation in statistical data.

Collection/Series: 
 

 

Mercredi oct 07, 2020
Speaker(s): 

The Petz recovery channel plays an important role in quantum information science as an operation that approximately reverses the effect of a quantum channel. The pretty good measurement is a special case of the Petz recovery channel, and it allows for near-optimal state discrimination. A hurdle to the experimental realization of these vaunted theoretical tools is the lack of a systematic and efficient method to implement them.

Scientific Areas: 
 

 

Mardi oct 06, 2020
Speaker(s): 

We show that a naïve application of the quantum extremal surface (QES) prescription can lead to paradoxical results and must be corrected at leading order. The corrections arise when there is a second QES (with strictly larger generalized entropy at leading order than the minimal QES), together with a large amount of highly incompressible bulk entropy between the two surfaces. We trace the source of the corrections to a failure of the assumptions used in the replica trick derivation of the QES prescription, and show that a more careful derivation correctly computes the corrections.

Collection/Series: 
Scientific Areas: 

Pages