Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.

Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.  Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

  

 

Vendredi sep 19, 2014
Speaker(s): 

Entanglement is a key feature of composite quantum system which is directly related to the potential power of quantum computers. In most computational models, it is assumed that local operations are relatively easy to implement. Therefore, quantum states that are related by local operations form a single entanglement class. In the case of local unitary operations, a finite set of polynomial invariants provides a complete characterization of the entanglement classes.

Scientific Areas: 

 

Vendredi sep 19, 2014

We discuss properties of 2-point functions in CFTs in 2+1D at finite temperature. For concreteness, we focus on those involving conserved flavour currents, in particular on the associated conductivity. At frequencies much greater than the temperature, ω >> T, the ω dependence of the conductivity can be computed from the operator product expansion (OPE) between the currents and operators which acquire a non-zero expectation value at T > 0. Such results are found to be in excellent agreement with quantum Monte Carlo studies of the O(2) Wilson-Fisher CFT.

Collection/Series: 

 

Vendredi sep 19, 2014
Speaker(s): 

 

Jeudi sep 18, 2014
Speaker(s): 

We isolate an important physical distinction between gauge symmetries which exist at the level of histories and states, and those which exist at the level of histories and not states. This distinction is characterised explicitly using a generalized Hamilton-Jacobi formalism within which a non-standard prescription for the observables of classical totally constrained systems is developed. These ideas motivate a `relational quantization' procedure which is different from the standard `Dirac quanization'.

Collection/Series: 
Scientific Areas: 

 

Jeudi sep 18, 2014
Speaker(s): 

I will discuss the evolution of a quantum scalar field in a toy universe which has three stages of evolution, viz., (i) an early (inflationary) de Sitter phase (ii) radiation-dominated phase and (iii) late-time (cosmological constant dominated) de Sitter phase. Using the Schr\"odinger picture, the scalar field equations are solved separately for the three stages and matched at the transition points. The boundary conditions are chosen so that field modes in the early de Sitter phase evolve from the Bunch-Davies vacuum state.

Collection/Series: 
Scientific Areas: 

 

Jeudi sep 18, 2014
Speaker(s): 

 

Jeudi sep 18, 2014
Speaker(s): 

 

Mercredi sep 17, 2014
Speaker(s): 

A class of d-level quantum states called "magic states", whose initial purpose was to enable universal fault-tolerant computation within error-correcting codes, has a surprisingly broad range of applications. We begin by describing their structure with respect to the Clifford hierarchy, and in terms of convex geometry before proceeding to their applications. They appear to have some relevance to the search for SIC-POVMs in certain prime dimensions. A version of the CHSH non-local game, using a d-ary alphabet and Pauli measurements, has an optimal quantum strategy using magic states.

 

Mercredi sep 17, 2014
Speaker(s): 

Living things operate according to well-known physical laws, yet it is challenging to discern specific, non-trivial consequences of these constraints for how an organism that is a product of evolution must behave. Part of the difficulty here is that life lives very far from thermal equilibrium, where many of our traditional theoretical tools fail us. However, recent developments in nonequilibrium statistical mechanics may help light a way forward.

Collection/Series: 

 

Mercredi sep 17, 2014
Speaker(s): 

Pages