This series consists of talks in the area of Quantum Gravity.
I will describe the relevant representation theory that allows to think of all components of fermions of a single generation of the Standard Model as components of a single Weyl spinor of an orthogonal group whose complexification is SO(14,C). There are then only two real forms that do not lead to fermion doubling. One of these real forms is the split signature orthogonal group SO(7,7). I will describe some exceptional phenomena that occur for the orthogonal groups in 14 dimensions, and then specifically for this real form.
Tensor models are generalizations of vector and matrix models. They have been introduced in quantum gravity and are also relevant in the SYK model. I will mostly focus on models with a U(N)^d-invariance where d is the number of indices of the complex tensor, and a special case at d=3 with O(N)^3 invariance. The interactions and observables are then labeled by (d-1)-dimensional triangulations of PL pseudo-manifolds. The main result of this talk is the large N limit of observables corresponding to 2-dimensional planar triangulations at d=3.
The goal of this series is to collect various different formulations of General Relativity, with emphasis on four spacetime dimensions and formulations that use differential forms. The (non-exhaustive) list of formulations to be covered is per this plan:
Lecture 1): Motivations, followed by the usual Einstein-Hilbert to start with, first order Palatini, second order pure affine connection Eddington-Schroedinger.
The goal of this series is to collect various different formulations of General Relativity, with emphasis on four spacetime dimensions and formulations that use differential forms. The (non-exhaustive) list of formulations to be covered is per this plan:
Lecture 1): Motivations, followed by the usual Einstein-Hilbert to start with, first order Palatini, second order pure affine connection Eddington-Schroedinger.
The goal of this series is to collect various different formulations of General Relativity, with emphasis on four spacetime dimensions and formulations that use differential forms. The (non-exhaustive) list of formulations to be covered is per this plan:
Lecture 1): Motivations, followed by the usual Einstein-Hilbert to start with, first order Palatini, second order pure affine connection Eddington-Schroedinger.
The goal of this series is to collect various different formulations of General Relativity, with emphasis on four spacetime dimensions and formulations that use differential forms. The (non-exhaustive) list of formulations to be covered is per this plan:
Lecture 1): Motivations, followed by the usual Einstein-Hilbert to start with, first order Palatini, second order pure affine connection Eddington-Schroedinger.
Black hole entropy is a robust prediction of quantum gravity with no observational test to date. We use the Bekenstein-Hawking entropy formula to determine the probability distribution of the spin of black holes at equilibrium in the microcanonical ensemble. We argue that this ensemble is relevant for black holes formed in the early universe and predicts the existence of a population of black holes with zero spin.
I argue that we do not understand gauge theory as well as we think when boundaries are present. I will briefly explain the conceptual and technical issues that arise at the boundary. I will then propose a tentative resolution, which requires us to think of theories not in spacetime, but in field-space.
Black holes are like bells; once perturbed they will relax through the emission of characteristic waves. The frequency spectrum of these waves is independent of the initial perturbation and, hence, can be thought of as a `fingerprint' of the black hole. Since the 1970s scientists have considered the possibility of using these characteristic modes of oscillation to identify astrophysical black holes. With the recent detection of gravitational waves, this idea has started to turn into reality.
We find an approximation of the induced spatial distance on a Cauchy hypersurface using only the causal structure and local volume element. The approximation can be made arbitrarily precise for a globally hyperbolic spacetime with compact Cauchy hypersurfaces.