A A   
Connect with us:      
Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.

Quantum Foundations

This series consists of talks in the area of Foundations of Quantum Theory. Seminar and group meetings will alternate.

Seminar Series Events/Videos

Currently there are no upcoming talks in this series.

 

Mardi nov 08, 2016
Speaker(s): 

Can we decompose the information of a composite system into terms arising from its parts and their interactions?

For a bipartite system (X,Y), the joint entropy can be written as an algebraic sum of three terms: the entropy of X alone, the entropy of Y alone, and the mutual information of X and Y, which comes with an opposite sign. This suggests a set-theoretical analogy: mutual information is a sort of "intersection", and joint entropy is a sort of "union".

Collection/Series: 
Scientific Areas: 

 

Jeudi oct 27, 2016
Speaker(s): 

In order to solve the problem of quantum gravity, we first need to pose the problem. In this talk I will argue that the problem of quantum gravity arises already in the domain of quantum mechanics and the relativity principle. Specifically, the relativity principle implies that the concept of inertial motion should extend also to those systems that are in quantum superpositions of inertial motions. By contrast, relativistic quantum field theory only considers the point of view of classical observers in states of definite relative motion (i.e.

Collection/Series: 

 

Mardi oct 25, 2016
Speaker(s): 

I will explain and prove the statement of the title. The proof relies on a recent result of Slofstra in combinatorial group theory and the hypergraph approach to contextuality.

Based on http://arxiv.org/abs/1607.05870.

Collection/Series: 
Scientific Areas: 

 

Mardi oct 18, 2016
Speaker(s): 

In quantum information, we frequently consider (for instance, whenever we talk about entanglement) a composite system consisting of two separated subsystems. A standard axiom of quantum mechanics states that a composite system can be modeled as the tensor product of the two subsystems. However, there is another less restrictive way to model a composite system, which is used in quantum field theory: we can require only that the algebras of observables for each subsystem commute within some larger subalgebra.

Collection/Series: 
Scientific Areas: 

 

Mardi sep 20, 2016
Speaker(s): 

Bell's theorem shows that our intuitive understanding of causation must be overturned in light of quantum correlations. Nevertheless, quantum mechanics does not permit signalling and hence a notion of cause remains. Understanding this notion is not only important at a fundamental level, but also for technological applications such as key distribution and randomness expansion. It has recently been shown that a useful way to determine which classical causal structures give rise to a given set of correlations is to use entropy vectors.

Collection/Series: 

 

Vendredi juin 17, 2016
Speaker(s): 

In this talk, I will outline the current state of the art in the study of the reality of the quantum state. The main theme will be that, although you cannot derive the reality of the quantum state in an ontological model without additional assumptions, you can place constraints on the amount of overlap between probability measures that begin to make psi-epistemic theories look implausible.

Collection/Series: 
Scientific Areas: 

 

Jeudi juin 16, 2016
Speaker(s): 

The ideas of no-signalling, nonlocality, Bell inequalities, and quantum correlations can all be understood as implications of a presumed causal structure. In particular, the causal structure of the Bell scenario implies the Bell inequalities whenever the shared resource is presumed to act like a classical hidden random variable. If the shared resource in the scenario is a quantum system, however, then the quantum causal structure can give rise to a larger set of correlations, including probability distributions which violate Bell inequalities up to Tsirelson's bound.

Collection/Series: 
Scientific Areas: 

 

Mercredi juin 15, 2016
Speaker(s): 

In this talk I will go over the recent paper by Daniela Frauchiger and Renato Renner, "Single-world interpretations of quantum theory cannot be self-consistent" (arXiv:1604.07422).



The paper introduces an extended Wigner's friend thought experiment, which makes use of Hardy's paradox to show that agents will necessarily reach contradictory conclusions - unless they take into account that they themselves may be in a superposition, and that their subjective experience of observing an outcome is not the whole story.



Collection/Series: 
Scientific Areas: 

 

Mercredi juin 15, 2016
Speaker(s): 

Certain superposition states of the 1-D infinite square well have transient zeros at locations other than the nodes of the eigenstates that comprise them. It is shown that if an infinite potential barrier is suddenly raised at some or all of these zeros, the well can be split into multiple adjacent infinite square wells without affecting the wavefunction.

Collection/Series: 
Scientific Areas: 

Pages