Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.

Quantum Fields and Strings

This series consists of talks in the area of Quantum Fields and Strings.

Seminar Series Events/Videos

Currently there are no upcoming talks in this series.

 

Mardi mai 14, 2019
Speaker(s): 

This talk is about a new type of string theory with a non-relativistic conformal field theory on the world-sheet, as well as a non-relativistic target space geometry. Starting with the relativistic Polyakov action with a fixed momentum along a non-compact null-isometry, we can take a scaling limit that gives the non-relativistic string, including an interesting intermediate step. This can in particular be applied to a string on AdS5 x S5. In this case the scaling limit realizes a limit of AdS/CFT that on the field theory side gives a quantum mechanical theory known as Spin Matrix theory.

Collection/Series: 
Scientific Areas: 

 

Lundi mai 13, 2019

2D CFTs have an infinite set of commuting conserved charges, known as the quantum KdV charges. There is a generalised Gibbs ensemble for these theories where we turn on chemical potentials for these charges. I will describe some partial results on calculating this partition function, both in the limit of large charges and perturbatively in the chemical potentials. 

Collection/Series: 
Scientific Areas: 
 

 

Vendredi mai 10, 2019
Speaker(s): 

The partition function of three-dimensional N=2 SCFTs on circle bundles of closed Riemann surfaces \Sigma_g was recently computed via supersymmetric localization. In this talk I will describe supergravity solutions having as conformal boundary such circle bundle. These configurations are solutions to N=2 minimal gauged supergravity in 4d and pertain to the class of AdS-Taub-NUT and AdS-Taub-Bolt preserving 1/4 of the supersymmetries.

Collection/Series: 
Scientific Areas: 
 

 

Mardi mai 07, 2019
Speaker(s): 

Melonic tensor model is a new type of solvable model, where the melonic Feynman diagrams dominate in the large N limit. The melonic dominance, as well as the solvability of the model, relies on a special type of interaction vertex, which generically would not be preserved under renormalization group flow. I will discuss a class of 2d N=(2,2) melonic tensor models, where the non-renormalization of the superpotential protects the melonic dominance. Another important feature of our models is that they admit a novel type of deformations which gives a large IR conformal manifold.

Collection/Series: 
Scientific Areas: 
 

 

Mardi avr 30, 2019
Speaker(s): 

In string backgrounds with flux and branes, there are subtleties in identifying the independent, globally-defined degrees of freedom due to required gauge patching, which we illustrate with background flux. Work by Cariglia and Lechner (extending Dirac and Teitelboim) allows separation of D-brane and flux degrees of freedom without doubling the gauge sector in a democratic formalism.

Collection/Series: 
Scientific Areas: 
 

 

Mardi avr 23, 2019
Speaker(s): 

The near horizon region of any black hole looks like flat space and displays an approximate Poincare symmetry. We study the way these symmetries are realized for near extremal black holes.

Collection/Series: 
Scientific Areas: 
 

 

Mardi avr 16, 2019

Defects and their RG flows play an important role in many systems, with perhaps the most famous example being the Kondo effect. We study Kondo-like interface flows in D1/D5 holography from the point of view of both probe branes and of the corresponding backreacted supergravity solutions.

Collection/Series: 
Scientific Areas: 
 

 

Lundi avr 15, 2019
Speaker(s): 

I will discuss the computation of second-order terms in the entanglement entropy and subregion complexity for a spherical entangling region in the AdS black hole background relative to pure AdS. I will suggest an extension of the conjectured relationship between subregion complexity and Fisher information into a relation that is reminiscent of the first law of thermodynamics. By analogy, entanglement and complexity play the roles of heat and work, respectively. Time permitting, I will also discuss the computation of third- and fourth-order terms in the relative entropy. 

Collection/Series: 
Scientific Areas: 
 

 

Mardi mar 26, 2019
Speaker(s): 

I will give an overview of recent results on three-dimensional N=2 supersymmetric gauge theories placed on arbitrary half-BPS geometries. In particular, I will explain an explicit computation of the supersymmetric partition function on any Seifert three-manifold; such manifolds can have very intricate and interesting topology (for instance, a nice example is the Poincaré sphere) and can provide new interesting observables in 3d SCFTs.

Collection/Series: 
Scientific Areas: 
 

 

Mardi mar 19, 2019
Speaker(s): 

Magnetohydrodynamics (MHD) describes the low-energy physics of electromagnetically conducting plasmas. In the conventional formulation of MHD, one introduces dynamical electromagnetic fields on top of the usual hydrodynamic setup by hand. In this talk, we will explore an alternate effective view of MHD purely based on symmetries, as a "string fluid" of magnetic field lines, without any assumption about the underlying microscopic field content. We will argue that MHD is described by a novel theory of superfluidity with a partially broken one-form symmetry.

Collection/Series: 
Scientific Areas: 

Pages