Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.

PSI 2018/2019 - Machine Learning (Hayward Sierens)

PSI 2018/2019 - Machine Learning (Hayward Sierens)

 

Vendredi avr 12, 2019
Speaker(s): 

Generative modelling: explicit and approximate likelihood models; implicit likelihood models

 

Jeudi avr 11, 2019
Speaker(s): 

Generative modelling: explicit and tractable likelihood models

 

Mercredi avr 10, 2019
Speaker(s): 

Quantum state reconstruction using restricted Boltzmann machines

 

Mardi avr 09, 2019
Speaker(s): 

Restricted Boltzmann machines: training to minimize the Kullback-Liebler divergence

 

Lundi avr 08, 2019
Speaker(s): 

Generative modelling: Hopfield networks, Boltzmann machines and restricted Boltzmann machines (RBMs)

 

Vendredi avr 05, 2019
Speaker(s): 

Reinforcement learning: Q-learning, Bellman equations

 

Jeudi avr 04, 2019
Speaker(s): 

Reinforcement learning: Markov decision processes, policy gradient methods

 

Mercredi avr 03, 2019

Dimensional reduction using t-distributed stochastic neighbour embedding (t-SNE); Kullback-Liebler (KL) divergence; maximum likelihood estimation

 

Mardi avr 02, 2019

Introduction to unsupervised learning; dimensional reduction using principal component analysis

 

Lundi avr 01, 2019

Convolutional neural networks: local receptive fields, shared weights and biases, pooling

Pages