This series consists of weekly discussion sessions on foundations of quantum Theory and quantum information theory. The sessions start with an informal exposition of an interesting topic, research result or important question in the field. Everyone is strongly encouraged to participate with questions and comments.
We explore the role of rotational symmetry of quantum key distribution
(QKD) protocols in their security. Specifically, in the first part of the
talk, we consider a generalized QKD protocol with discrete rotational
symmetry. Note that, before our work, each QKD protocol seems to have a
different security proof. Given that the techniques of those proofs are
similar, it will be interesting to have a unified proof for QKD protocols
with symmetry (e.g., the BB84 protocol and the SARG04 protocol). This is
Most modern discussions of Bell's theorem take microscopic causality (the arrow of time) for granted, and raise serious doubts concerning realism and/or relativity. Alternatively, one may allow a weak form of backwards-in-time causation, by considering "causes" to have not only "effects" at later times but also "influences" at earlier times. These "influences" generate the correlations of quantum entanglement, but do not enable information to be transmitted to the past. Can one realize this scenario in a mathematical model?
In this talk, I will show how to efficiently generate graph states
based on realistic linear optics (with imperfect photon detectors and source), how to do scalable quantum computation with probabilistic atom photon
interactions, and how to simulate strongly correlated many-body physics with ultracold atomic gas.
Complexity class MA is a class of yes/no problems for which the answer `yes\' has a short certificate that can be efficiently checked by a classical randomized algorithm. We prove that MA has a natural complete
TBA
TBA
We describe a protocol for distilling maximally entangled bipartite states between random pairs of parties (``random entanglement'') from those sharing a tripartite W state, and show that this may be done at a higher rate than distillation of bipartite entanglement between specified pairs of parties (``specified entanglement'').
Quantum mechanics is a non-classical probability calculus -- but hardly the most general one imaginable. In this talk, I'll discuss some familiar non-classical properties of quantum-probabilistic models that turn out to be features of {em all} non-classical models. These include a generic no-cloning theorem obtained in recent work with Howard Barnum, Jon Barrett and Matt Leifer.
Entanglement is one of the most studied features of quantum mechanics and in particular quantum information. Yet its role in quantum information is still not clearly understood. Results such as (R. Josza and N. Linden, Proc. Roy. Soc. Lond. A 459, 2011 (2003)) show that entanglement is necessary, but stabilizer states and the Gottesman-Knill theorem (for example) imply that it is far from sufficient. I will discuss three aspects of entanglement.
My field is the foundations of quantum mechanics, in particular Bohmian mechanics, a non-relativistic theory that is empirically equivalent to standard quantum mechanics while solving all of its paradoxes in an elegant and simple way, essentially by assuming that particles have trajectories.