Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.

Perimeter Institute Public Lecture Series

Perimeter Institute brings great thinkers from around the world to Canada to share their ideas on a wide variety of interesting and topical subjects. These lectures and debates are aimed at non-specialists. No mathematical or scientific knowledge is necessary or assumed. Each event is explicitly tailored for the general public and everyone is welcome to attend.


Mercredi mar 07, 2007

Hollywood movies about aliens abound, but do they really exist? The real scientific search for evidence of life, and particularly intelligent life, elsewhere in the cosmos is just as exciting as the “reel” version, and a lot more logical. So far, there is ‘life-as-we-know-it’ to guide our speculations and observations. But a new appreciation for the tenacity of life, a growing respect for the world of microbes, and new search technologies involving observatories and spacecraft are rapidly expanding our viewpoint. Many expect surprises.


Mercredi fév 07, 2007

Will big questions be answered when the Large Hadron Collider (LHC) switches on in 2007? What will scientists find? Where might the research lead? Nima Arkani-Hamed, a noted particle theorist, is a Professor of Physics at Harvard University. He investigates a number of mysteries and interactions in nature – puzzles that are likely to have experimental consequences in the next few years via particle accelerators, like the LHC, as well as cosmological observations.


Mercredi déc 06, 2006

Using results from models of the atmosphere/ocean/sediment carbon cycle, the impacts of fossil-fuel CO2 release will be examined – including the effect on climate many thousands of years into the future, rather than for just a few centuries as commonly claimed. Prof. Archer will explain how aspects of the Earth system, such as the growth or melting of the great ice sheets, the thawing of permafrost, and the release of methane from the methane hydrate deposits in the deep ocean, take thousands of years to respond to a change in climate.


Mercredi nov 01, 2006

Newton\'s first law of motion - and the very meaning of inertia - has been described as either completely obvious (D\'Alembert) or a \'logician\'s nightmare\' (ex-editor of the American Journal of Physics). Sometimes the simplest things in physics are the most subtle. The first law will be described in historical context, explaining a connection with the ancient Greeks’ distinction between natural and violent motion and with Descartes\' natural philosophy. You will also learn why it still requires careful handling and what it tells us about time in physics.

Scientific Areas: 


Mercredi oct 04, 2006

From Levin’s recent book comes a strange if true story of coded secrets, psychotic delusions, mathematics, and war. This story of greatness and weakness, of genius and delusion, circulates around the parallel lives of Kurt Gödel, the greatest logician of many centuries, and Alan Turing, the extraordinary code breaker during World War II. Taken together their work proved that there are limits to knowledge, that machines could be taught to compute, that one day there could be artificial intelligence.


Mercredi sep 06, 2006

This is a story of how the impossible became possible. How, for centuries, scientists were absolutely sure that solids (as well as decorative patterns like tiling and quilts) could only have certain symmetries - such as square, hexagonal and triangular - and that most symmetries, including five-fold symmetry in the plane and icosahedral symmetry in three dimensions (the symmetry of a soccer ball), were strictly forbidden.


Vendredi juin 23, 2006

The laws of physics are usually meant to be set in stone; variability is not usually part of physics. Yet contradicting Einstein\'s tenet of the constancy of the speed of light raises nothing less than that possibility. I will discuss some of the more dramatic implications of a varying speed of light. João Magueijo is Professor of Physics at Imperial College London. He is currently visiting Perimeter Institute and the Canadian Institute for Theoretical Astrophysics in Toronto.


Mercredi juin 07, 2006

Long before the emergence of planets, stars, or galaxies, the universe consisted of an exploding quantum soup of “elementary” particles. Encoded in this formless, shapeless soup were seeds of cosmic structure, which over billions of years grew into the beautiful and complex universe we observe today. The lecture will explore the connection between the “inner space” of the quantum and the “outer space” of the cosmos. The inner space/outer space connection may hold the key to the nature of the dark matter holding together our galaxy and the mysterious dark energy pulling apart our universe.


Mardi juin 06, 2006

Einstein\'s famous equation E=mc2 asserts that energy and mass are different aspects of the same reality. It is usually associated with the idea that small amounts of mass can be converted into large amounts of energy. For fundamental physics, however, the more important idea is just the opposite. Researchers want to explain how mass itself arises, by explaining it in terms of more basic concepts. In this lecture targeted for a general audience, Prof. Wilczek will explain how this goal can, to a remarkable extent, be achieved.


Mercredi mai 03, 2006

Inside Harvard College Observatory in 1904, a young woman named Henrietta Swan Leavitt sat hunched over a stack of glass photographic plates, patiently counting stars. The images had been taken by a telescope high in the Peruvian Andes, and Miss Leavitt was given the tedious chore of measuring the brightness of thousands of tiny lights, something that would now be done by machine. Her job title was \'computer,\' but during the next few years she rose above her station as a tabulator of data and discovered a new law, one that would change forever our view of the universe.