This series consists of talks in the area of Mathematical Physics.
Every toric variety is a GIT quotient of an affine space by an algebraic torus. In this talk, I will discuss a way to understand and compute the symplectic mirrors of toric varieties from this universal perspective using the concept of window subcategories. The talk is based on results from a work of myself and a joint work in progress with Peng Zhou.
The theory of quasimaps to Nakajima quiver varieties X has recently been used very effectively by Aganagic, Okounkov and others to study symplectic duality. For certain X, namely Hilbert schemes of ADE surfaces, it turns out quasimap theory is equivalent to a particular flavor of Donaldson-Thomas theory on a related threefold Y. I will explain this equivalence and how it intertwines concepts and tools from the two sides. For example, symplectic duality has something to say about the crepant resolution conjecture for Y.
A classical result of R. Courant gives an upper bound for the count of nodal domains (connected components of the complement of where a function vanishes) for Dirichlet eigenfunctions on compact planar domains. This can be generalized to Laplace-Beltrami eigenfunctions on compact surfaces without boundary. When considering random linear combinations of eigenfunctions, one can make this count more precise and pose statistical questions on the geometries appearing amongst the nodal domains: what percentage have one hole? ten holes?
In this talk I will describe a new link "invariant" (with certain wall-crossing properties) for links L in a three-manifold M, where M takes the form of a surface times the real line. This link "invariant" is constructed via a map, called the q-nonabelianization map, from the
I will review the construction of Coulomb branches in 3D gauge theory for a compact Lie group G and a quaternionic representation E. In the case when E is polarized, these branches are determined by topological boundary conditions built from the gauged A-model of the two polar halves of E. No analogue of this is apparent in the absence of a polarization, nonetheless the Coulomb branch can be defined by the use of a ‘quantum’ square root of E (related to the Spin representation).
Geometry of a pair of complex Lagrangian submanifolds of a complex symplectic manifold appears in many areas of mathematics and physics, including exponential integrals in finite and infinite dimensions, wall-crossing formulas in 2d and 4d, representation theory, resurgence of WKB series and so on.
In 2014 we started a joint project with Maxim Kontsevich which we named "Holomorphic Floer Theory" (HFT for short) in order to study all these (and other) phenomena as a part of a bigger picture.
Idempotent (aka Karoubi) completion is used throughout mathematics: for instance, it is a common step when building a Fukaya category. I will explain the n-category generalization of idempotent completion. We call it "condensation completion" because it answers the question of classifying the gapped phases of matter that can be reached from a given one by condensing some of the chemicals in the matter system. From the TFT side, condensation preserves full dualizability.
It is expected that the Betti version of the geometric Langlands program should ultimately be about the equivalence of two 4-dimensional topological field theories. In this talk I will give an overview of ongoing work in categorified sheaf theory and explain how one can use it to describe the categories of boundary conditions arising on the spectral side.
I'll explain the TFT perspective on holomorphic-topological twists of 3d N=4 and 4d N=2 theories, and outline some connections between the topics discussed in Justin and Davide's previous lectures, and various ongoing work of Justin, Philsang, Kevin, Davide, Tudor, myself, etc.
Let G be a complex reductive group, and X be any smooth projective G-variety. In this talk, we will construct an algebra homomorphism from the G-equivariant homology of the affine Grassmannian Gr_G to the G-equivariant quantum cohomology of X. The construction uses shift operators in quantum cohomologies. We will also discuss the possible extension to the loop rotation equivariant setting and the relation with the Peterson isomorphism when X is the flag variety associated with G. This is based on joint work with Alexander Braverman.