This series consists of talks in the area of Mathematical Physics.
After a quick review of the Higgs and Coulomb branches of 3d N=4 theories, I'll introduce some simple classes of boundary conditions and explain how they lead to (pairs of) modules for certain (pairs of) quantum algebras. I will focus on abelian theories, for which the relevant boundary conditions/modules can be described using the geometry of (pairs of) hyperplane arrangements. From this, the simplest examples of symplectic-dual modules will arise.