This series consists of talks in the areas of Cosmology, Gravitation and Particle Physics.
We introduce two new effective quantities for the study of comoving curvature perturbations
I’ll discuss the issue of how we can tell which quantum state might be the “right “ one for inflationary quantum fluctuations. I’ll then use a new class of states that entangle curvature fluctuations with those of a spectator scalar field and discuss potential observational signatures of such states.
It is generally believed that modification of general relativity inevitably introduce extra physical degree(s) of freedom.
In this talk I argue that this is not the case by constructing modified gravity theories with two local physical degrees of freedom. After classifying such theories into two types, I show explicit examples and discuss their cosmology and phenomenology.
Modified gravity theories typically feature numerous additional parameters and functions as compared to general relativity, which are unmotivated by observations and challenging to meaningfully constrain. We instead propose a new theory of gravity with the startling property of having *fewer* degrees of freedom than general relativity with a cosmological constant, by invoking a duality property within a first-order formulation that supports torsion.
The history of the baryonic (normal) matter in the universe is an excellent probe of the formation of cosmic structures and the evolution of galaxies. Over the last decade, considerable effort has gone into investigating the physics of baryonic material, particularly after the epoch of Cosmic Dawn: signalling the birth of the earliest stars and
Fundamental physics traditionally views the dynamical laws governing the world as time reversal invariant. The evident arrow of time of nature is then held to be an accident, emerging as we coarse grain and originating in the improbable choice of initial conditions. The main pillar which supports this time-symmetric lifestyle is the fluctuation-dissipation theorem, which connects purely time-symmetric microscopic equations to the emergence of a macroscopic arrow of thermodynamics.
Large scale B-mode patterns in CMB polarization, if detected, would constitute a “smoking gun” signature of primordial gravitational waves generated during an inflationary phase in the early universe. In this talk, I will discuss other sources of B-modes, such as primordial magnetic fields, axion-like fields and cosmic strings, and prospects of isolating their distinguishing features with future CMB measurements.
I'll discuss recent work on finding time-dependent solutions of a black hole interacting with a scalar field. I'll discuss two distinct cases where the back-reaction of the scalar can be found. First, in the case that the scalar is slowly rolling (such as in inflation) the scalar field can be found in terms of super-advanced time coordinate, regular on both horizons. The scalar back-reacts on the geometry, with the black hole accreting and growing more or less as expected.