COVID-19 information for PI Residents and Visitors

<&
Conference Date: 
Wednesday, April 28, 2010 (All day) to Friday, April 30, 2010 (All day)
Scientific Areas: 
Cosmology

 

The distribution of the large scale structure of the universe is the next great cosmological data set, following the Cosmic Microwave Background. It will allow us to study in remarkable detail the initial spectrum of fluctuations and the gravitational physics that governs both the homogeneous evolution of the universe as a whole and the local growth of inhomogeneities.

 

This workshop will focus on the near-future and long term prospects for learning fundamental physics from large scale structure, especially through statistics of the initial curvature fluctuations and tests of general relativity in the history of structure growth.

 

 

Tzu-Ching Chang, CITA

Paolo Creminelli, ICTP Trieste

Michael Gladders, University of Chicago

Chris Hirata, California Institute of Technology

Gil Holder, McGill University

Wayne Hu, University of Chicago

Lam Hui, Columbia University

Dragan Huterer, University of Michigan

Bhuvnesh Jain, University of Pennsylvania

Eiichiro Komatsu, University of Texas

Jeffrey Newman, University of Pittsburgh

Alberto Nicolis, Columbia University

Ue-Li Pen, CITA

Fabian Schmidt, California Institute of Technology

Roman Scoccimarro, New York University

Suzanne Staggs, Princeton University

Anze Slosar, Brookhaven National Laboratory

James Taylor, University of Waterloo

Hy Trac, Harvard-Smithsonian Center for Astrophysics

Alexey Vikhlinin, Harvard-Smithsonian Center for Astrophysics

Pengjie Zhang, Shanghai Astronomical Observatory

 

Paolo Creminelli, ICTP Trieste

Galilean Genesis: an alternative to inflation

I will discuss an alternative to inflation based on a Galileon field. The model starts in a (contracting or expanding) quasi Minkowski phase and all the energy of the Universe in generated suddenly in a sort of Genesis associated with a strong violation of the Null Energy Condition. The symmetries of the model force any additional scalar field to acquire a scale invariant spectrum of perturbations.


Michael Gladders, University of Chicago

Strong Lensing on Galaxy Cluster Scales

 

The statistics of strong lensing by galaxy clusters are sensitive both to cosmology and the detailed physics that determines the structure of halos. To exploit these sensitivites requires large and well defined samples of lenses on these mass scales. I will report on efforts to provide such samples - we finally now have uniformly selected samples of several hundred lenses to work with.


Chris Hirata, California Institute of Technology

Tidal Alignments & Large Scale Structure

 

TBA


Gil Holder, McGill University

Fingerprints of structure formation in the microwave background

 

Non-linear structures in the universe leave characteristic imprints in the cosmic microwave background. These include Compton scattering (Sunyaev-Zeldovich effects) and gravitational lensing. The South Pole Telescope now has a catalog of massive galaxy clusters that were discovered this way, along with a measure of the background fluctuations generated by smaller clusters, that can be used to chart the growth of structure in the universe. 


Wayne Hu, University of Chicago

Cosmic Acceleration: Dark Energy vs Modified Gravity

 

I will discuss distinctions between dark energy and modified gravity explanations of cosmic acceleration from the horizon scale to the deeply non-linear regime using the modified action f(R) and braneworld DGP models as worked toy examples.


Lam Hui, Columbia University

Robustness and Violations of a Scalar Equivalence Principle

 

Modified gravity theories under consideration typically reduce to a scalar-tensor form in the appropriate limits.

I will discuss in what sense a universal scalar coupling is stable against quantum corrections, when the scalar equivalence principle is violated, how to look for such violations, and the connection with cosmic acceleration.


Dragan Huterer, University of Michigan

Falsifying Paradigms for Cosmic Acceleration

 

How can we rule out whole classes of dark energy models? And what quantities, at what redshift, and with what accuracy, should be measured in order to rule out these classes of models? I present answers to these questions by discussing an approach that utilizes the principal component parametrization of dark energy. I show results based on current data, and future forecasted data from SNAP and Planck.


Bhuvnesh Jain, University of Pennsylvania

Magnification of high-redshift galaxies

 

TBA


Eiichiro Komatsu, University of Texas

Bullet Cluster: A Challenge to Lambda-CDM Cosmology

 

We show that the existence of the bullet cluster, 1E0657-56, is incompatible with the prediction of the standard Lambda CDM cosmology. The probability of finding the large infall velocity (3000 km/s) necessary for explaining the X-ray and weak lensing data of 1E0657-56 is  between 3.3x10^{-11} and 3.6x10^{-9}. The existence of the bullet cluster  poses a serious challenge to LCDM cosmology, unless a lower infall velocity solution for 1E0657-56 with <1800 km/s is found.  


Jeffrey Newman, University of Pittsburgh

Optical Surveys of Large-Scale Structure

 

TBD


Alberto Nicolis, Columbia University

The Galileon as a local modification of gravity

TBA


Fabian Schmidt, California Institute of Technology

Non-linear structure formation in modified gravity

 

Instead of adding another dark component to the energy budget of the Universe, one can ask whether the observed accelerated expansion might in fact be due to the behavior of gravity itself on the largest scales.

In this talk I will focus on two popular modified gravity theories which realize this scenario: f(R) gravity and the DGP model. While these models yield an accelerated expansion, they also affect the formation of structure on much smaller scales. We have studied this with cosmological N-body simulations which consistently solve for the modified gravitational force. I will discuss the effects of modified gravity on dark matter halo properties as well as cosmological observables.  For

f(R) gravity, our first simulation-calibrated constraints from the observed abundance of massive clusters improve on previous constraints from the CMB and ISW by a factor of ~1000.  This exemplifies the sensitivity of cosmological observables in the non-linear regime as probes of gravity.

 


Hy Trac, Harvard-Smithsonian Center for Astrophysics

Templates for the SZ Angular Power Spectrum

 

The Atacama Cosmology Telescope (ACT) has recently measured the CMB angular power spectrum from maps with arcminute resolution at 148 GHz. By fitting to a template for the SZ angular power spectrum, we constrain the model's amplitude A_SZ < 1.63 (95% confidence level) and the amplitude of matter perturbations sigma_8 < 0.86 (95% CL). In this talk, we review the fiducial template and present additional templates for the SZ angular power spectrum based on different models for the hot gas in dark matter halos. We also discuss how the TSZ, KSZ, and SZ power spectra scale with sigma_8.


Alexey Vikhlinin, Harvard-Smithsonian Center for Astrophysics

Recent advances and future challenges for using galaxy clusters in cosmology

 

X-ray surveys and deep Chandra observations recently provided ~10% accurate measurements of the total mass in nearly 100 galaxy clusters at z=0-0.9. These data clearly show the effect of Dark Energy on slow-down of the structure growth at z<1. THe combination of the structure growth measurements with other cosmological observations substantially improves the constraints on the Dark Energy equation of state parameter. More advanced applications include constraints on the deviations from General Relativity on 10-100 Mpc scales. Will the situation improve in the future when samples of 10^3-10^5 clusters are available? I will review the current "bottlenecks", and discuss possible strategies for using future cluster data for "precision cosmology".

 


Pengjie Zhang, Shanghai Astronomical Observatory

Testing gravity at cosmological scales: from linear to nonlinear regimes

 

Observations are opening new windows to test general relativity at cosmological scales. In this talk, I will discuss  how gravity determines the expansion and structure formation of the universe, what smoking guns of gravity in the cosmos we are expecting, what difficulties we are facing to perform unambiguous tests of gravity  and what are possible ways to overcome these difficulties.